
Automatically Comparing
Memory Consistency Models

1

John Wickerson
Imperial

Mark Batty
U Kent

Tyler Sorensen
Imperial

George A. Constantinides
Imperial

S-REPLS @ Imperial
Tuesday 27 September 2016

C++

x86

Contents

• Context: memory consistency models (MCMs)

• Where our work fits in

• Key Ideas

• Applications

2

Contents

• Context: memory consistency models (MCMs)

• Where our work fits in

• Key Ideas

• Applications

3

Relaxed-memory behaviours

4

x = 1; y = 1;

x = y = 0;

r0 = y; r1 = x;

Relaxed-memory behaviours

5

x = 1;

x = y = 0;

r0 = y;
y = 1;
r1 = x;

r0 = 0, r1 = 1

Relaxed-memory behaviours

6

x = 1;

x = y = 0;

r0 = y;
y = 1;

r1 = x;

r0 = 0, r1 = 1

r0 = 1, r1 = 1

Relaxed-memory behaviours

7

x = 1;

x = y = 0;

r0 = y;

y = 1;
r1 = x;

r0 = 0, r1 = 1

r0 = 1, r1 = 1

r0 = 1, r1 = 0

Relaxed-memory behaviours

8

x = 1; y = 1;

x = y = 0;

r0 = y; r1 = x;

r0 = 0, r1 = 1

r0 = 1, r1 = 1

r0 = 1, r1 = 0

r0 = 0, r1 = 0

Much confusion!
Subtleties related to relaxed memory have led to bugs
in...

• programming language specifications  
[Batty+ POPL'11, Batty+ ESOP'13],

• deployed processors [Alglave+ CAV'10];

• compilers [Morisset+ PLDI'13, Sevcik+ ECOOP'08], and

• vendor-endorsed programming guides  
[Alglave+ ASPLOS'15].

9

Axiomatic models

10

x = 1; y = 1;
r0 = y; r1 = x;

Axiomatic models

11

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=0

sb sbrf

Axiomatic models

12

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

Axiomatic models

13

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

Axiomatic models

14

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

Axiomatic models

15

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

SC ✓

Axiomatic models

16

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

SC ✓ SC ✓

Axiomatic models

17

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

SC ✓

SC ✓

SC ✓

Axiomatic models

18

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

SC ✓

SC ✓

SC ✓

SC ×

Axiomatic models

19

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

x86 ✓ SC ✓

SC ✓

SC ✓

SC ×

Axiomatic models

20

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

x86 ✓ SC ✓

SC ✓

x86 ✓ SC ✓

SC ×

Axiomatic models

21

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

x86 ✓ SC ✓

x86 ✓ SC ✓

x86 ✓ SC ✓

SC ×

Axiomatic models

22

x = 1; y = 1;
r0 = y; r1 = x;

W x=1

R y=1

W y=1

R x=1

rfsb sbrf

W x=1

R y=1

W y=1

R x=0

sb sbrf

W x=1

R y=0

W y=1

R x=1

rfsb sb

W x=1

R y=0

W y=1

R x=0

sb sb

x86 ✓ SC ✓

x86 ✓ SC ✓

x86 ✓ SC ✓

x86 ✓ SC ×

Contents

• Context: memory consistency models (MCMs)

• Where our work fits in

• Key Ideas

• Applications

23

Some challenges and current
approaches to tackling them

24

Question Existing work

Some challenges and current
approaches to tackling them

25

Question Existing work
Can a given litmus test pass

under a given MCM?

Some challenges and current
approaches to tackling them

26

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Some challenges and current
approaches to tackling them

27

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

Some challenges and current
approaches to tackling them

28

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Some challenges and current
approaches to tackling them

29

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

Some challenges and current
approaches to tackling them

30

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Some challenges and current
approaches to tackling them

31

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

Some challenges and current
approaches to tackling them

32

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11]; 

Some challenges and current
approaches to tackling them

33

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11]; 

Does my MCM allow a given
compiler mapping?

Some challenges and current
approaches to tackling them

34

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11]; 

Does my MCM allow a given
compiler mapping?

manual c'examples [Wickerson+ OOPSLA'15];  
manual proof [Batty+ POPL'11, Batty+ POPL'12]; 

Our contributions

35

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11];

Does my MCM allow a given
compiler mapping?

manual c'examples [Wickerson+ OOPSLA'15];  
manual proof [Batty+ POPL'11, Batty+ POPL'12];

Our contributions

36

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11];

Does my MCM allow a given
compiler mapping?

manual c'examples [Wickerson+ OOPSLA'15];  
manual proof [Batty+ POPL'11, Batty+ POPL'12];

automatic generation

Our contributions

37

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11];

Does my MCM allow a given
compiler mapping?

manual c'examples [Wickerson+ OOPSLA'15];  
manual proof [Batty+ POPL'11, Batty+ POPL'12];

automatic generation

automatic checking 

Our contributions

38

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11];

Does my MCM allow a given
compiler mapping?

manual c'examples [Wickerson+ OOPSLA'15];  
manual proof [Batty+ POPL'11, Batty+ POPL'12];

automatic generation

automatic checking 

automatic checking 

Our contributions

39

Question Existing work
Can a given litmus test pass

under a given MCM? CppMem, Herd, MemSAT, Nemos, ...

Which litmus tests can be run
to check whether a machine
conforms to a given MCM?

semi-automatic generation  
with DIY [Alglave+ CAV'10]; 

Is one MCM more permissive
than another?

manual proof; manual examples [Batty+ POPL'16];  
semi-automatic checking with DIY+Herd;

Does my MCM allow a given
compiler optimisation?

manual c'examples [Vafeiaidis+ POPL'15]; 
manual proof [Sevcik PLDI'11];

Does my MCM allow a given
compiler mapping?

manual c'examples [Wickerson+ OOPSLA'15];  
manual proof [Batty+ POPL'11, Batty+ POPL'12];

automatic generation

automatic checking 

automatic checking 

automatic checking 

Contents

• Context: memory consistency models (MCMs)

• Where our work fits in

• Key Ideas

• Applications

40

Key Idea 1

Key Idea 1
• What are M's conformance tests? 

Find (P,σ) where σ ∉ obsM(P) and σ ∈ obs0(P).

Key Idea 1
• What are M's conformance tests? 

Find (P,σ) where σ ∉ obsM(P) and σ ∈ obs0(P).

• Is M stronger than N? 
No if ∃(P,σ) where σ ∉ obsN(P) and σ ∈ obsM(P).

Key Idea 1
• What are M's conformance tests? 

Find (P,σ) where σ ∉ obsM(P) and σ ∈ obs0(P).

• Is M stronger than N? 
No if ∃(P,σ) where σ ∉ obsN(P) and σ ∈ obsM(P).

• Does M allow my optimisation?  
No if ∃(P,Q,σ) where σ ∉ obsM(P), σ ∈ obsM(Q) and P optimises to Q.

Key Idea 1
• What are M's conformance tests? 

Find (P,σ) where σ ∉ obsM(P) and σ ∈ obs0(P).

• Is M stronger than N? 
No if ∃(P,σ) where σ ∉ obsN(P) and σ ∈ obsM(P).

• Does M allow my optimisation?  
No if ∃(P,Q,σ) where σ ∉ obsM(P), σ ∈ obsM(Q) and P optimises to Q.

• Can M be implemented by my mapping to N? 
No if ∃(P,Q,σ) where σ ∉ obsM(P), σ ∈ obsN(Q) and P compiles to Q.

Key Idea 1
• What are M's conformance tests? 

Find (P,σ) where σ ∉ obsM(P) and σ ∈ obs0(P).

• Is M stronger than N? 
No if ∃(P,σ) where σ ∉ obsN(P) and σ ∈ obsM(P).

• Does M allow my optimisation?  
No if ∃(P,Q,σ) where σ ∉ obsM(P), σ ∈ obsM(Q) and P optimises to Q.

• Can M be implemented by my mapping to N? 
No if ∃(P,Q,σ) where σ ∉ obsM(P), σ ∈ obsN(Q) and P compiles to Q.

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2
{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2

P

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2

P Q

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2

P Q▸

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2

P Q

Y

▸

Y'

some (consistent) 
execution must

reach σ
{

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2

P Q

X Y

▸

X' Y'

every (consistent)
execution must  

not reach σ

some (consistent) 
execution must

reach σ

{ {

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2

X Y

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

Key Idea 2

X Y ∈ consistentN

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

∉ consistentM

Key Idea 2

X Y ∈ consistentN

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

∉ consistentM

Key Idea 2

P Q

X Y ∈ consistentN

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

∉ consistentM

Key Idea 2

P Q

X Y

▹

∈ consistentN

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

∉ consistentM

Key Idea 2

P Q

X Y

▸
▹

∈ consistentN

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

∉ consistentM

Key Idea 2

P Q

X Y

▸

Y'

▹

∈ consistentN

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

∉ consistentM

Key Idea 2

P Q

X Y

▸

X' Y'

▹

∈ consistentN

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

∉ consistentM

Key Idea 2

P Q

X Y

▸

X' Y'

▹

∈ consistentN∈ deadM

{(P,Q,σ) | σ ∉ obsM(P) ∧ σ ∈ obsN(Q) ∧ P ▸ Q}

The Alloy Constraint Solver

Contents

• Context: memory consistency models (MCMs)

• Where our work fits in

• Key Ideas

• Applications

63

Comparing "strong release-acquire"  
to original release-acquire

Comparing "strong release-acquire"  
to original release-acquire

to ‘B ; C’, then our algorithm would suggest, unrealistically, that
‘if b then A’ can compile to ‘(if b then B) ; (if b then C)’. In
our experience, the generated P ’s and Q’s are sufficiently close to
being related by I that the discrepancy does not matter.

In fact, we do not even prove that lits is guaranteed to provide
a valid solution to g , nor that it even necessarily exists. Such a
proof would be highly fragile, being dependent on intricacies of the
deadness constraint, which in turn depends on intricacies of various
MCMs, many of which may be revised in the future. Instead, we
follow the ‘lightweight, automatic’ approach extolled elsewhere in
this paper. Besides using Alloy to check the definition of dead (as
described in §3.4), we also implemented (in Java) a basic MCM
simulator to enumerate the candidate executions of each litmus test
we generate. We would have preferred to have used an existing
simulator like herd [9] or CppMem [13], but we found both tools
to be unsuitable because of restrictions they impose on the language
of litmus tests: herd cannot handle sb being partial within a thread,
and CppMem cannot handle if-statements that test for particular
values.

4. Application: Comparing MCMs (Q2)
This section reports on our use of Alloy to compare three proposed
variants of the C11 MCM (§4.1, §4.2, §4.3), and also to compare
SC with a co-free MCM (§A.13).

4.1 Simplifying the SC Axioms in C11
Batty et al. have proposed a change to the C11 consistency axioms
that enables them to be simplified, and also makes the S order
redundant [11]. Let us call the original C11 MCM C11-Orig and
the proposed MCM C11-Simp. Alloy was able to demonstrate that
C11-Simp is strictly stronger than C11-Orig, by demonstrating
an execution that is consistent under C11-Orig but inconsistent
under C11-Simp. The execution, and its derived litmus test, are as
follows:

WRLX x 1 CSC x 1/2

RSC y 0WSC y 1

RSC x 1

S

S

sb

sb
S

co

rf
rf

atomic_int x=0,y=0;
x.store(1,RLX);

r0=x.cas(1,2,SC,RLX);
r1=y.load(SC);

y.store(1,SC);
r2=x.load(SC);

r0==true && r1==0 && r2==1

Batty et al. also present a litmus test that distinguishes C11-
Simp and C11-Orig. Their test uses seven instructions across four
threads [11 (Example 1)], whereas Alloy’s (above) needs only five
instructions across three threads. Alloy was further able to confirm
that no four-event execution can distinguish the MCMs.

4.2 Strong Release/Acquire Semantics in C11
Lahav et al. have described an alternative, stronger semantics for
release/acquire atomics [39]. For the release/acquire fragment of
C11 (no non-atomics, no relaxed or SC atomics), their semantics
amounts to adding the axiom acyclic(sb[co[rf). Let us call that
MCM C11-SRA. We used Alloy to compare it to C11-Simp over
the release/acquire fragment.

Lahav et al. provide a 10-event execution that distinguishes the
MCMs [39 (Fig. 5)].4 Alloy, on the other hand, found a distinguish-
ing execution with just 6 events

4 Lahav et al. impose an additional technical requirement that postcondi-
tions should not need to refer to shared locations (only to registers), which
rules out the even-simpler ‘2+2W’ litmus test [59].

strengthen(X ,Y)

43 E
X

= E
Y

44 R
X

= R
Y

45 W
X

= W
Y

46 F
X

= F
Y

47 nal
X

= nal
Y

48 sb
X

✓ sb
Y

49 ad
X

✓ ad
Y

50 cd
X

✓ cd
Y

51 dd
X

✓ dd
Y

52 sthd
X

✓ sthd
Y

53 sloc
X

= sloc
Y

54 rf
X

= rf
Y

55 co
X

= co
Y

Figure 9. ‘Strengthening’ an execution

WREL x 1

WREL y 2

RACQ y 1

WREL y 1

WREL x 2

RACQ x 1

coco

rfrf

sb

sb

sb

sb

atomic_int x=0,y=0;
x.store(1,REL);
y.store(2,REL);
r0=y.load(ACQ);

y.store(1,REL);
x.store(2,REL);
r1=x.load(ACQ);

r0==1 && r1==1

which we confirmed with Lahav et al. to be sufficient.

4.3 Forbidding Reading/Synchronisation Cycles in C11
Nienhuis et al. [52] have suggested strengthening the C11 MCM
with the axiom acyclic(sw [rf). We used Alloy to search for
litmus tests that would witness such a change, and discovered a
solution requiring 12 events and 6 threads

CRLX y 4/5

FREL

WRLX x 1

CREL y 2/3

WRLX y 4

CACQ x 1/2

CREL x 2/3

WSC x 4

CSC y 1/2

CREL x 4/5

FAR

WRLX y 1

sb

sb

sb

sb sb

sb

co

co

co

rf

co

rf

co

rf

co

rf

co

rf

co

rf

that is virtually identical to one provided by Nienhuis et al., if a
little less symmetrical. We further used Alloy to search for smaller
litmus tests, and were able to confirm that no execution with fewer
than 8 events can detect this change. For executions with 8 to 11
events, the SAT solver could not return a result in a reasonable time.

5. Application: Checking Monotonicity (Q3)
This section reports on our use of Alloy to find two monotonicity
violations in the C11 MCM: one where a new behaviour is enabled
by sequentialisation (§5.1), and one where a new behaviour is
enabled by strengthening a memory order (§5.2).

Checking monotonicity requires the relation defined in Fig. 9,
which holds when one execution is ‘stronger’ than another. There is
almost an isomorphism between X and Y , except that Y may have
extra sb and dependency edges 48 49 50 51 , and it may interleave
multiple threads together 52 .

When Alloy finds X and Y that witness non-monotonicity at
the execution level (X is inconsistent, Y is consistent, and Y is
stronger than X), we search for programs P and Q that witness
non-monotonicity at the source-code level. We constrain P and Q
to have X and Y as maximal candidate executions respectively,
and Q to be stronger than P in the sense that P and Q contain the
same instructions, control dependencies and sequencing between
instructions in P are preserved in Q , and instructions in the same
thread in P are in the same thread in Q .

5.1 Monotonicity of C11 w.r.t. Sequencing
One way to extend the strengthen relation to the C11 setting is to
add the following constraints:

A
X

= A
Y

acq
X

= acq
Y

rel
X

= rel
Y

sc
X

= sc
Y

.

8 Compiled at 09:32 on June 23, 2016

• Cf. Nienhuis et al. (OOPSLA '16):

Comparing Nienhuis et al.'s  
C++ variant to the original

• Cf. Nienhuis et al. (OOPSLA '16):

Comparing Nienhuis et al.'s  
C++ variant to the original

to ‘B ; C’, then our algorithm would suggest, unrealistically, that
‘if b then A’ can compile to ‘(if b then B) ; (if b then C)’. In
our experience, the generated P ’s and Q’s are sufficiently close to
being related by I that the discrepancy does not matter.

In fact, we do not even prove that lits is guaranteed to provide
a valid solution to g , nor that it even necessarily exists. Such a
proof would be highly fragile, being dependent on intricacies of the
deadness constraint, which in turn depends on intricacies of various
MCMs, many of which may be revised in the future. Instead, we
follow the ‘lightweight, automatic’ approach extolled elsewhere in
this paper. Besides using Alloy to check the definition of dead (as
described in §3.4), we also implemented (in Java) a basic MCM
simulator to enumerate the candidate executions of each litmus test
we generate. We would have preferred to have used an existing
simulator like herd [9] or CppMem [13], but we found both tools
to be unsuitable because of restrictions they impose on the language
of litmus tests: herd cannot handle sb being partial within a thread,
and CppMem cannot handle if-statements that test for particular
values.

4. Application: Comparing MCMs (Q2)
This section reports on our use of Alloy to compare three proposed
variants of the C11 MCM (§4.1, §4.2, §4.3), and also to compare
SC with a co-free MCM (§A.13).

4.1 Simplifying the SC Axioms in C11
Batty et al. have proposed a change to the C11 consistency axioms
that enables them to be simplified, and also makes the S order
redundant [11]. Let us call the original C11 MCM C11-Orig and
the proposed MCM C11-Simp. Alloy was able to demonstrate that
C11-Simp is strictly stronger than C11-Orig, by demonstrating
an execution that is consistent under C11-Orig but inconsistent
under C11-Simp. The execution, and its derived litmus test, are as
follows:

WRLX x 1 CSC x 1/2

RSC y 0WSC y 1

RSC x 1

S

S

sb

sb
S

co

rf
rf

atomic_int x=0,y=0;
x.store(1,RLX);

r0=x.cas(1,2,SC,RLX);
r1=y.load(SC);

y.store(1,SC);
r2=x.load(SC);

r0==true && r1==0 && r2==1

Batty et al. also present a litmus test that distinguishes C11-
Simp and C11-Orig. Their test uses seven instructions across four
threads [11 (Example 1)], whereas Alloy’s (above) needs only five
instructions across three threads. Alloy was further able to confirm
that no four-event execution can distinguish the MCMs.

4.2 Strong Release/Acquire Semantics in C11
Lahav et al. have described an alternative, stronger semantics for
release/acquire atomics [39]. For the release/acquire fragment of
C11 (no non-atomics, no relaxed or SC atomics), their semantics
amounts to adding the axiom acyclic(sb[co[rf). Let us call that
MCM C11-SRA. We used Alloy to compare it to C11-Simp over
the release/acquire fragment.

Lahav et al. provide a 10-event execution that distinguishes the
MCMs [39 (Fig. 5)].4 Alloy, on the other hand, found a distinguish-
ing execution with just 6 events

4 Lahav et al. impose an additional technical requirement that postcondi-
tions should not need to refer to shared locations (only to registers), which
rules out the even-simpler ‘2+2W’ litmus test [59].

strengthen(X ,Y)

43 E
X

= E
Y

44 R
X

= R
Y

45 W
X

= W
Y

46 F
X

= F
Y

47 nal
X

= nal
Y

48 sb
X

✓ sb
Y

49 ad
X

✓ ad
Y

50 cd
X

✓ cd
Y

51 dd
X

✓ dd
Y

52 sthd
X

✓ sthd
Y

53 sloc
X

= sloc
Y

54 rf
X

= rf
Y

55 co
X

= co
Y

Figure 9. ‘Strengthening’ an execution

WREL x 1

WREL y 2

RACQ y 1

WREL y 1

WREL x 2

RACQ x 1

coco

rfrf

sb

sb

sb

sb

atomic_int x=0,y=0;
x.store(1,REL);
y.store(2,REL);
r0=y.load(ACQ);

y.store(1,REL);
x.store(2,REL);
r1=x.load(ACQ);

r0==1 && r1==1

which we confirmed with Lahav et al. to be sufficient.

4.3 Forbidding Reading/Synchronisation Cycles in C11
Nienhuis et al. [52] have suggested strengthening the C11 MCM
with the axiom acyclic(sw [rf). We used Alloy to search for
litmus tests that would witness such a change, and discovered a
solution requiring 12 events and 6 threads

CRLX y 4/5

FREL

WRLX x 1

CREL y 2/3

WRLX y 4

CACQ x 1/2

CREL x 2/3

WSC x 4

CSC y 1/2

CREL x 4/5

FAR

WRLX y 1

sb

sb

sb

sb sb

sb

co

co

co

rf

co

rf

co

rf

co

rf

co

rf

co

rf

that is virtually identical to one provided by Nienhuis et al., if a
little less symmetrical. We further used Alloy to search for smaller
litmus tests, and were able to confirm that no execution with fewer
than 8 events can detect this change. For executions with 8 to 11
events, the SAT solver could not return a result in a reasonable time.

5. Application: Checking Monotonicity (Q3)
This section reports on our use of Alloy to find two monotonicity
violations in the C11 MCM: one where a new behaviour is enabled
by sequentialisation (§5.1), and one where a new behaviour is
enabled by strengthening a memory order (§5.2).

Checking monotonicity requires the relation defined in Fig. 9,
which holds when one execution is ‘stronger’ than another. There is
almost an isomorphism between X and Y , except that Y may have
extra sb and dependency edges 48 49 50 51 , and it may interleave
multiple threads together 52 .

When Alloy finds X and Y that witness non-monotonicity at
the execution level (X is inconsistent, Y is consistent, and Y is
stronger than X), we search for programs P and Q that witness
non-monotonicity at the source-code level. We constrain P and Q
to have X and Y as maximal candidate executions respectively,
and Q to be stronger than P in the sense that P and Q contain the
same instructions, control dependencies and sequencing between
instructions in P are preserved in Q , and instructions in the same
thread in P are in the same thread in Q .

5.1 Monotonicity of C11 w.r.t. Sequencing
One way to extend the strengthen relation to the C11 setting is to
add the following constraints:

A
X

= A
Y

acq
X

= acq
Y

rel
X

= rel
Y

sc
X

= sc
Y

.

8 Compiled at 09:32 on June 23, 2016

Comparing Batty et al.'s  
C++ variant to the original

Comparing Batty et al.'s  
C++ variant to the original

to ‘B ; C’, then our algorithm would suggest, unrealistically, that
‘if b then A’ can compile to ‘(if b then B) ; (if b then C)’. In
our experience, the generated P ’s and Q’s are sufficiently close to
being related by I that the discrepancy does not matter.

In fact, we do not even prove that lits is guaranteed to provide
a valid solution to g , nor that it even necessarily exists. Such a
proof would be highly fragile, being dependent on intricacies of the
deadness constraint, which in turn depends on intricacies of various
MCMs, many of which may be revised in the future. Instead, we
follow the ‘lightweight, automatic’ approach extolled elsewhere in
this paper. Besides using Alloy to check the definition of dead (as
described in §3.4), we also implemented (in Java) a basic MCM
simulator to enumerate the candidate executions of each litmus test
we generate. We would have preferred to have used an existing
simulator like herd [9] or CppMem [13], but we found both tools
to be unsuitable because of restrictions they impose on the language
of litmus tests: herd cannot handle sb being partial within a thread,
and CppMem cannot handle if-statements that test for particular
values.

4. Application: Comparing MCMs (Q2)
This section reports on our use of Alloy to compare three proposed
variants of the C11 MCM (§4.1, §4.2, §4.3), and also to compare
SC with a co-free MCM (§A.13).

4.1 Simplifying the SC Axioms in C11
Batty et al. have proposed a change to the C11 consistency axioms
that enables them to be simplified, and also makes the S order
redundant [11]. Let us call the original C11 MCM C11-Orig and
the proposed MCM C11-Simp. Alloy was able to demonstrate that
C11-Simp is strictly stronger than C11-Orig, by demonstrating
an execution that is consistent under C11-Orig but inconsistent
under C11-Simp. The execution, and its derived litmus test, are as
follows:

WRLX x 1 CSC x 1/2

RSC y 0WSC y 1

RSC x 1

S

S

sb

sb
S

co

rf
rf

atomic_int x=0,y=0;
x.store(1,RLX);

r0=x.cas(1,2,SC,RLX);
r1=y.load(SC);

y.store(1,SC);
r2=x.load(SC);

r0==true && r1==0 && r2==1

Batty et al. also present a litmus test that distinguishes C11-
Simp and C11-Orig. Their test uses seven instructions across four
threads [11 (Example 1)], whereas Alloy’s (above) needs only five
instructions across three threads. Alloy was further able to confirm
that no four-event execution can distinguish the MCMs.

4.2 Strong Release/Acquire Semantics in C11
Lahav et al. have described an alternative, stronger semantics for
release/acquire atomics [39]. For the release/acquire fragment of
C11 (no non-atomics, no relaxed or SC atomics), their semantics
amounts to adding the axiom acyclic(sb[co[rf). Let us call that
MCM C11-SRA. We used Alloy to compare it to C11-Simp over
the release/acquire fragment.

Lahav et al. provide a 10-event execution that distinguishes the
MCMs [39 (Fig. 5)].4 Alloy, on the other hand, found a distinguish-
ing execution with just 6 events

4 Lahav et al. impose an additional technical requirement that postcondi-
tions should not need to refer to shared locations (only to registers), which
rules out the even-simpler ‘2+2W’ litmus test [59].

strengthen(X ,Y)

43 E
X

= E
Y

44 R
X

= R
Y

45 W
X

= W
Y

46 F
X

= F
Y

47 nal
X

= nal
Y

48 sb
X

✓ sb
Y

49 ad
X

✓ ad
Y

50 cd
X

✓ cd
Y

51 dd
X

✓ dd
Y

52 sthd
X

✓ sthd
Y

53 sloc
X

= sloc
Y

54 rf
X

= rf
Y

55 co
X

= co
Y

Figure 9. ‘Strengthening’ an execution

WREL x 1

WREL y 2

RACQ y 1

WREL y 1

WREL x 2

RACQ x 1

coco

rfrf

sb

sb

sb

sb

atomic_int x=0,y=0;
x.store(1,REL);
y.store(2,REL);
r0=y.load(ACQ);

y.store(1,REL);
x.store(2,REL);
r1=x.load(ACQ);

r0==1 && r1==1

which we confirmed with Lahav et al. to be sufficient.

4.3 Forbidding Reading/Synchronisation Cycles in C11
Nienhuis et al. [52] have suggested strengthening the C11 MCM
with the axiom acyclic(sw [rf). We used Alloy to search for
litmus tests that would witness such a change, and discovered a
solution requiring 12 events and 6 threads

CRLX y 4/5

FREL

WRLX x 1

CREL y 2/3

WRLX y 4

CACQ x 1/2

CREL x 2/3

WSC x 4

CSC y 1/2

CREL x 4/5

FAR

WRLX y 1

sb

sb

sb

sb sb

sb

co

co

co

rf

co

rf

co

rf

co

rf

co

rf

co

rf

that is virtually identical to one provided by Nienhuis et al., if a
little less symmetrical. We further used Alloy to search for smaller
litmus tests, and were able to confirm that no execution with fewer
than 8 events can detect this change. For executions with 8 to 11
events, the SAT solver could not return a result in a reasonable time.

5. Application: Checking Monotonicity (Q3)
This section reports on our use of Alloy to find two monotonicity
violations in the C11 MCM: one where a new behaviour is enabled
by sequentialisation (§5.1), and one where a new behaviour is
enabled by strengthening a memory order (§5.2).

Checking monotonicity requires the relation defined in Fig. 9,
which holds when one execution is ‘stronger’ than another. There is
almost an isomorphism between X and Y , except that Y may have
extra sb and dependency edges 48 49 50 51 , and it may interleave
multiple threads together 52 .

When Alloy finds X and Y that witness non-monotonicity at
the execution level (X is inconsistent, Y is consistent, and Y is
stronger than X), we search for programs P and Q that witness
non-monotonicity at the source-code level. We constrain P and Q
to have X and Y as maximal candidate executions respectively,
and Q to be stronger than P in the sense that P and Q contain the
same instructions, control dependencies and sequencing between
instructions in P are preserved in Q , and instructions in the same
thread in P are in the same thread in Q .

5.1 Monotonicity of C11 w.r.t. Sequencing
One way to extend the strengthen relation to the C11 setting is to
add the following constraints:

A
X

= A
Y

acq
X

= acq
Y

rel
X

= rel
Y

sc
X

= sc
Y

.

8 Compiled at 09:32 on June 23, 2016

Does C++ allow "linearisation"?

Does C++ allow "linearisation"?

A. Bonus stuff, probably won’t fit in
A.1 Monotonicity violation in C11
Alloy finds the following pair of 6-event executions that witness a
monotonicity violation in C11:

RRLX x 1

Rna a 1

WSC y 1

RRLX y 1

WRLX x 1

Wna a 1 RRLX x 1

Rna a 1

WSC y 1

RRLX y 1

WRLX x 1

Wna a 1

sb cd

sb cd

sb cd

sb cd

sb cd

sb cd

sb
rf

rf

rf rf

rf

rf

⇡

⇡

⇡

⇡

⇡

⇡

where left-hand execution is inconsistent (because the write to
a does not happen-before the read that observes its value) but
the right-hand execution (obtained by sequentialising two of the
threads) is consistent (since a’s write now happens-before its
read). This is essentially the same execution as that discovered
by Vafeiadis et al. [68 (Fig. 1)]; it is just a little less elegant: Alloy
chose the write to y to be sequentially-consistent when a relaxed
write would suffice.

A.2 Generating monotonic programs
We rely on the following property of our program-generating func-
tion:

if strengthen(X ,Y , rf , co)
then ltest(X , rf , co) v ltest(Y , rf , co)

The v relation is defined as the smallest partial order that is com-
patible with the syntax of litmus tests and satisfies:

st(x, v, rel) v st(x, v, rlx) st(x, v, sc) v st(x, v, rel)

ld(r, x, sc) v ld(r, x,acq) ld(r, x,acq) v ld(r, x, rlx)

xc(r, x, v, sc) v xc(r, x, v,ar)

xc(r, x, v,ar) v xc(r, x, v,acq)

xc(r, x, v,ar) v xc(r, x, v, rel)

xc(r, x, v,acq) v xc(r, x, v, rlx)

xc(r, x, v, rel) v xc(r, x, v, rlx) C1;C2 v C1 + C2

C1;C2 v C1 ll C2

A.3 Compiling C11 to x86
A mapping ⇡ implements the C11-to-x86 compilation scheme if it
satisfies the following constraints:

mapping(⇡,X ,Y):
82

(⇡

�1
; ⇡) = [Y .ev] 83

(X .sb ; ⇡) = (⇡ ; Y .sb)
84

(X .sthd ; ⇡) = (⇡ ;Y .sthd) 85
(X .sloc ; ⇡) = (⇡ ;Y .sloc)

86
(X .cd ; ⇡) = (⇡ ; Y .cd) 87

(X .ad ; ⇡) = (⇡ ; Y .ad)
88

(X .dd ; ⇡) = (⇡ ; Y .dd) 89
⇡(X .R) = Y .R

90
⇡(X .W) = Y .W 91

⇡(X .sc) = Y .A
92

⇡(X .F \X .sc) = Y .F 93
⇡(X .F� X .sc) 6\Y .F

This mapping is one-to-one 82 . It preserves sequenced-before 83 ,
threads 84 , locations 85 , and dependencies 86 87 88 . Reads are

bxc = &x
bvc = v

be + 0⇥ rc = (bec+0*r)
bst(e

x

, e
v

,None)c = *be
x

c=be
v

c
bst(e

x

, e
v

, Some mo)c =

(atomic_store((atomic_int*)be
x

c,be
v

c,mo),0)
bld(r , e

x

,None)c = r=((int*)be
x

c)
bld(r , e

x

, Some mo)c = r=atomic_load(be
x

c,mo)
bcas(r , e

x

, v , e
v

0
, Some mo)c =

r=(atomic_compare_exchange_strong(
(atomic_int*)be

x

c,v,be
v

0c,mo,relaxed))?v:0
bfence(Some mo)c = atomic_thread_fence(mo)
bif r = v then ac = r==v?bac:0

bC1 + C2c = bC1c+bC2c
bC1 ; C2c = (bC1c,bC2c)

Figure 17. Generating executable C code [[JW: Needs checking]]

mapped to reads 89 and writes are mapped to writes 90 . SC events
are mapped to atomic events 91 . SC fences are mapped to fences 92 ,
and non-SC fences are mapped to no-ops 93 .

A.4 Generating executable code
It is quite straightforward to convert from a term in P⌧ to a piece
of executable C11 or assembly code. For example, Fig. 17 demon-
strates how we generate C11 code.

A.5 Monotonicity results for x86
To extend the strengthen relation to the x86 setting, we add
the constraint locked

X

✓ locked
Y

– this allows the stronger
execution to have additional ‘locked’ events. We used Alloy to
search for monotonicity violations in the x86-TSO model, as for-
malised by Alglave et al. [9] – that is, we sought solutions for
g̃(x86-TSO, x86-TSO, strengthenx86). Alloy discovered the fol-
lowing pair of executions:

a: W x 1

b: Rlock y 0

c: Wlock y 1

d : R x 0

a 0: W x 1

b0: Rlock y 0

c0: Wlock y 1

d 0: Rlock x 0

sb sbsb sb

The left-hand execution is forbidden because a write cannot be re-
ordered with a later read if one of them is locked. The right-hand
execution is allowed because of a bug in Alglave et al.’s formal-
isation of x86-TSO: they neglect to forbid write/read reordering
when both the write (c0) and the read (d 0) are locked. Upon amend-
ing their model and rerunning our test, Alloy could find no further
monotonicity violations.

A.6 Amusing remark about Prolog
Remark 21. Recalling Prolog’s ‘green cuts’ and ‘red cuts’ [18],
we could describe a postcondition as ‘red’ if it rules out an exe-
cution that is consistent and racy, and ‘green’ otherwise. Herd and
cppmem allow users the freedom to generate red postconditions,
for pedagogical reasons. In our work, we must only generate green
postconditions.

A.7 Compiling C11 to Power
A C execution X is deemed to compile to a Power execution

Y if there exists a relation ⇡ between the events of the former and

16 Compiled at 09:32 on June 23, 2016

Is AMD's OpenCL  
compiler mapping sound?

Is AMD's OpenCL  
compiler mapping sound?

to a work-group-scoped fence (e 0
1) sequenced before a PTX write

(e 0
2) 76 .

Cumulative synchronisation across scopes We used Alloy to
check this mapping against PTX1, and found an execution that is
disallowed by OpenCL but allowed, after compilation, by PTX1:

a: WSC,DV y 1 b: RACQ,WG y 1

c: WSC,DV x 1

d : RSC,DV x 1

e: RSC,DV y 0
sb sb

rf

rf

t1: t2: t3:

where the outer dotted boxes group threads by workgroup. The
crux here is cumulative synchronisation across scopes [34 (§1.7.1)].
Thread t1 synchronises at work-group scope with t2 (via a and
b), which synchronises at device scope with t3 (via c and d). If
PTX1 supported cumulative synchronisation across scopes, t1 and
t3 would now be synchronised, and the execution above, in which
e observes a stale y, would be forbidden, just as it is in OpenCL.

We could fix the mapping for PTX1 by upgrading all the
PTX fences in Tab. 1 to device-scope. However, because widely-
scoped fences incur significant performance overhead on NVIDIA
GPUs [63], we opt instead to strengthen PTX1 to support our ef-
ficient mapping, by enforcing cumulative synchronisation across
scopes (obtaining PTX2). This entails amending axiom 79 to be-
come [[JW: say a few more words about this]]:

acyclic(rmo [((rmo [fany)
⇤
; fdv ; (rmo [fany)

⇤
)).

Alloy confirmed that our mapping is now sound for executions with
up to ?? events.

Testing PTX2 It remains to show that PTX2 is sound w.r.t.
empirical GPU testing data. To do this, we use Q2 to find litmus
tests (P ,�) that are allowed under PTX1 but disallowed under
PTX2. We wish to find not just a single litmus test (as in §4),
but as many as possible, so we run Alloy iteratively, each time
explicitly disallowing the specific events and relations that led to
the execution being inconsistent in PTX2 found previously, until
Alloy is unable to find more (for a given number of events). We
then check testing results (or if results do not currently exist for a
given test, we run new tests) to confirm that (P ,�) cannot pass on
actual GPUs.

Using this method, we are able to show that there are 14
distinguishing executions with 7 events (e.g. the classic WRC
shape [46]), 8 distinguishing tests with 8 events (e.g. IRIW [16]),
and ?? distinguishing tests with 9 events (e.g. ISA2 [59]). [[TS:
The 9 event tests may time out, this will need to be mentioned]]
Out of these ?? tests, we are able to query Alglave et al.’s experi-
mental results [6] for ?? of them. The rest are single-address tests
(which arise because PTX does not guarantee coherence in gen-
eral). For these tests, we ran experiments using the GPU-litmus
tool [6] on an NVIDIA ??. All distinguishing tests and empiri-
cal data can be found in the supplemental material. We found no
instances of a behaviour being allowed by PTX1, disallowed by
PTX2, and empirically observable on a GPU. Thus, subject to the
available testing data, strengthening PTX1 to PTX2 is sound.

6.2 Compiling OpenCL to AMD-Style GPUs
Orr et al. [56] describe a compilation scheme from OpenCL to
an AMD-style GPU architecture. Actually, they support OpenCL
extended with ‘remote-scope promotion’, in which a work-group-
scoped event a can synchronise with an event b in a different work-
group if b is annotated as ‘remote’. Wickerson et al. [73] report on
two bugs in this scheme: a failure to implement message-passing,
and a failure of RMW atomicity.

a: CAR,WG x 0/1

b: WREL,DV,REM x 2

co

⇣
x 7!vd 2
x 7!L 0

⌘
InvA

⇣
x 7!vd 2
x 7!L 0

⌘

⇣
x 7!L 0

⌘
W x 2

⇣
x 7!vd 2
x 7!L 0

⌘

⇣
x 7!L 0

⌘
Flu

⇣
x 7!L 0

⌘

⇣
x 7! 0

⌘
Lk x

⇣
x 7!L 0

⌘

⇣
x 7!vd 2
x 7!L 0

⌘
Uk x

⇣
x 7!vd 2
x 7! 0

⌘

⇣
x 7! 0

⌘
fet x

⇣
x 7!vc 0
x 7! 0

⌘

⇣
x 7!vc 0
x 7! 0

⌘
C x 0/1

⇣
x 7!vd 1
x 7! 0

⌘

⇣
x 7!vd 2
x 7! 0

⌘
flu x

⇣
x 7!vc 2
x 7! 2

⌘⇣
x 7!vd 1
x 7! 2

⌘
flu x

⇣
x 7!vc 1
x 7! 1

⌘

co

⇡

⇡

Figure 13. RMW atomicity bug in OpenCL/AMD compilation

We have formalised Orr et al.’s architecture-level MCM and
compilation scheme in Alloy (following the formalisation by Wick-
erson et al.), and then used Alloy to search for bugs – essen-
tially automating the task that Wickerson et al. conducted manu-
ally. The architecture-level MCM is operational, which means that
consistent executions are obtained constructively, not merely char-
acterised by axioms. This means that the MCM is more complex
to express in Alloy. Essentially, the MCM involves a single global
memory in which entries can be temporarily locked, several pro-
cessing elements partitioned into compute units, and a write-back
write-allocate cache per compute unit.

Fig. 13 depicts the RMW atomicity bug discovered by Alloy.
The top left of the figure shows a 2-event execution that is incon-
sistent (and dead) in OpenCL, and the right shows a corresponding
9-event execution that is observable on hardware. (Wickerson et
al.’s bug is similar, but requires an extra ‘fetch’ event.) Events in
the architecture-level execution are totally ordered (thick black ar-
rows). We track the local and global state before and after each
event, writing

� �
l

�
g

�
for local state �

l

and global state �

g

. The
global state comprises global memory entries, some of which are
locked (L). The local state comprises the compute unit’s cache en-
tries, each either valid (v) or invalid (i), and either clean (c) or dirty
(d). The ⇡ edges show how the software-level events are mapped to
architecture-level events. The RMW at work-group scope (a) maps
to a single RMW, while the remote (REM) write to x (b) is imple-
mented by first flushing all dirty local cache entries (Flu), then do-
ing the write (W), then invalidating all entries in all caches (InvA),
all while preventing concurrent access to x in the global memory
(Lk, Uk). Architecture-level executions also include the actions of
the ‘environment’ fetching (fet) and flushing (flu) entries to and
from global memory, as well as derived rf and co relations.

The undesirable but observable execution, in which x = 1 in
the final state, arises because the mapping fails to propagate x = 2

to the global memory before releasing the lock on x. The fix is to
flush immediately after the write.

To make Alloy’s search for OpenCL/AMD compiler bugs
tractable, we found it necessary to make several simplifications:
we deleted the QuickRelease buffers [26]; we allowed multiple lo-
cations to be fetched and flushed in a single action (which reduces
the total number of actions required); we hard-coded the system to
have exactly two work-groups with one thread each; and we max-
imised sharing between global and local memory entry objects.
These changes are not necessarily semantics-preserving, but any
bogus solutions found using the simplified MCM can be simply
tested manually against the full one.

10 Compiled at 09:32 on June 23, 2016

Checking and fixing an
OpenCL/PTX compiler mapping
• PTX MCM proposed by Alglave et al. (ASPLOS '15)

• "Obvious" OpenCL/PTX mapping is invalid

• Manually revise PTX MCM (to obtain "PTX2")

• Now mapping is valid

• Run litmus tests that distinguish PTX/PTX2 against
GPU hardware to validate PTX2

Contents

• Context: memory consistency models (MCMs)

• Where our work fits in

• Key Ideas

• Applications

75

Automatically Comparing
Memory Consistency Models

76

John Wickerson
Imperial

Mark Batty
U Kent

Tyler Sorensen
Imperial

George A. Constantinides
Imperial

Newcastle University
Wednesday 31 August 2016

C++

x86

